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Received i i  August 1992 

Abstract Making use of simple properties of the angular momentum algebra, new sum 
rules involving Legendre polynomials, Clehsch4ordan and Racah coefficients are derived, 
and their connection with collision processes is illustrated. When rhe argument of the Legendre 
poiynomizls is set to unity, some of the obtained sum lules reduce to well known formulae. 
Finally. employing a recurrence relation for Racah coefficients. further sum rules are presented. 

1. Introduction 

In this paper we give and derive new sum mles involving Legendre polynomials, Clebsch- 
Gordan. and Racah coefficients, using simple properties of the angular momentum algebra. 
TO do so we consider the sum 

sg&eiec, tie;; 8) = [(2& + 1)(24 + 1)(2tf+ 1)(2t;+ 1)(2L + 1)(2L'+ 1)]1'2 

where all t s  are positive integers and Pc is a Legendre polynomial of degree L. The 
multivariable angular function S$$(!i&, tie;; 8) is found in the general formulation of the 
differential cross section for non-relativistic excitations by electron impact of atomic systems 
(see, for example, Blatt and Biedenham 1952). In this case the above integers represent 
angular momenta For partial wave analysis of collision problems and for these processes in 
particular, it would be useful to transform sum (1) so that a compact form for the differential 
cross section can be obtained (Ancarani 1992). 

For excitation problems the meaning of the notation used in (1) is as follows. Initially the 
angular momenta of the target (superscript a) and of the colliding electron are respectively 
f,: and ti; after the inelastic collision they are P,; and e,. The total angular momentum L 
is obtained by coupling ea with ti and with &; B is the scattering angle. Note that L, 
which is coupled to L and L', has no physical meaning. Both +e; + L: and lf'+ E; + L 
must be even to prevent sum (1) vanishing. The geometrical representation of the coupling 
of angular momenta is shown in figure 1. 

In section 2 we write sum (1) in a veiy different way. Section 3 deals with the special 
case !; = 0 and explicit results for e; = 0 , l  and 2 are given. From some of these, 
further sum rules are derived (section 4) using a three-terms recurrence relation for Racah 
coefficients (Kachurik and Klimyk 1990). Throughout the paper, extensive use of the book 
by Edmonds (1957) on angular momentum will be made so that, for simplicity, this reference 
will~be denoted by I in what follows. 
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Figure 1. Coupling of angular momenta. 

2. General case 

Let us employ properties of the angular momentum algebra to write sum (1) in a different 
way. Making use of equation (6.2.8) of I, we wite the coefficients of (1) as 

In this form, the symmetry in the angular momenta is more apparent than in expression (1). 
The integer 13 (which has no physical meaning) has been eliminated and replaced by the 
projections of and e;. 
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3. Special case : e; = 0 

Let us now consider the special case e; = 0. From ( 1 )  it follows immediately that ei = L, 
e; = L' and 

$$(Lef, ~ ' e ; ;  6) = [(Ze, + 1)(2e;+ 1 ) ( 2 ~  + 1 ) ( 2 ~ ' +  1)]'/' 

( ~ - m f ) ! ( ~ ' - m f ) !  
mf)! (L'+ mf)! 

] P,"'(cos 8) PF(cos 6) 

where P,"(cos 6 )  (m = 0, f l ,  . . . , &L) are the associated Legendre polynomials of the first 
kind of degree L and order m defined by equation (25.17) of I. As regards the physical 
application referred to in the introduction, expression (5)  can be found in part of formula 
(n.B.47) of the paper by Alder et aI(1956). Form (6) of sum ( 1 )  has proved to be very 
useful in deriving a compact formulation for the differential cross section corresponding to 
excitations by electron impact of atomic systems in which the initial (E! = 0) and/or final 
(e: = 0) state is an s-state (see Ancarani 1992). Note that, from the algebraic point of view. 
the two cases are the same. 

When the angle 6 is set to zero (this corresponds to the forward scattering direction) 
sum (6) vanishes unless mf  = 0. Moreover P e ( l )  = 1 Vt, and relations (5) and (6) become 

s:$'(Let, LV;; 0) = [(Ze, + 1)(2e;+ I)(ZL + 1 ) ( 2 ~ '  + 1)1'~* 

= [(2f + 1)(2e;+ 1)(2L + 1)(2L' + I)]'/*(-)"+" 

L e f  e: 
x ( 0  0 O ) ( X  2 ?) 

the second equality being a well known result (see equation (6.2.6) of I). Note that (7a) 
can also be written in the notation of I as 

We now focus on three specific values oft;, namely 0, 1 and 2. For the collision 
problem considered they correspond respectively to final s-, p- and d-states of the atomic 
system i.e. monopole, dipole and quadrupole transitions. For simplicity, the argument of 
the Legendre polynomials will be omitted in what follows. 
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3.1. e; = o 
In this very simple case we have mf = 0, f f  = L ,  e; = L’ and 

s&“(LL, L‘L’; e)  = [(ZL + I)(zL’+ I ) ] ” ~ P ~ P ~ ,  

S,L,L’(LL, L‘L‘;O) = [ ( 2 L +  1)(2L’+1)]’/2. 

3.2. e; = I 

s;f(Lef, L’e;; e )  = [(Ze, + i ) w ; +  1 x 2 ~  + i ) ( z ~ ’ +  1)]’”(-)1+L+~’ 

There are three possible values for mf (-1.0, I); after some algebra, (6) becomes 

1- (9) 
+( L ~ e, I ) ( “ ‘  e; I )  2P; PL8 

-1 0 1 - 1  0 1 [L(L+ l)L’(L’+ 1 ) p  

From figure 1 it is straightforward to deduce the restricting triangular inequalities 

L-  11 <er < IL+II IL’- II < e ; <  IL’+ 11 (10) 

and, taking into account that L + L’ + tf + e; is even, there are five possible pairs (ef, 2;) 
for which the results are. 

( 1 1 4  

( 1 l b )  

( 1 l c )  

(IW 

So, LL‘ ( L L  - I ,  L‘L‘- 1; e) = -[LL’]’PP,P,. - [LL’]-iP;P;, 

S g , ( L L +  l , L ’ L ’ - 1 ; 6 )  = [ ( L +  I )r ’ ] ’ ’2PLPL?-[ (L+ l)L’]-tP;P;,  

SF(LL+ 1 ,  L’L‘+ i ; e )  = -KL+ I ) (L’+  I)I’/*P~P~. -[(L+ I)(L’+ I ) I - ~ P ; P : .  

S g , ( L L  - 1, L’L‘+ 1;e) = [L(L’+ l)]’/2PLPL< - [L(L’+ l ) ] - iP ;P; ,  

and 
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3.3. e; = 2 

s,$;’(Lef, L‘e;; 0) = [(ze,+ i)(ze;+ I)(ZL + I)(zL‘+ I)]’/*(-)‘+‘‘ 

In this case mc takes the values -2, -1,O. 1,2 and relation (6) becomes 

+ ( L et 2) ( L ‘  e; 2) 2 P; P;! 
-1 0 1 -1 0 1 [L(L+ 1) L’(L’+ 1)]1’2 

+( L et 2) ( L ‘  e; 2) 
- 2 0 2  - 2 0 2  

(13) I 2 P;P;, 
X 

[ ( L -  I )L (L+l ) (L+Z) (L’ -  l)L’(L’+l)(L’+2)]’12 ’ 

The 13 pairs (&,e;) giving non-vanishing values of (13) satisfy the following conditions: 

IL - 21 < et < IL +21 

and are 

IL’ - 21 < e; < lL’+ 21 L + L’+ er + e; = even 

(14) 

(lL-2I,lL’-21) (lL-21,L‘) (IL-21.L‘+2) (154 

( L ,  IL’ - 21) ( L ,  L’) ( L ,  L‘+2) (154 

(L+2,1L’-21) ( L  + 2, L’) ( L  + 2, L‘ + 2). (15e) 

(IL - 11, IL’ - 11) (15b) 

( L  + 1, I L’ - 1 I )  ( L + l , L ’ + I )  ( 1 5 4  

The explicit values of S,$:‘(Le, L’l;; 0) for these pairs can be easily calculated using table 2 
of I. For example, considering the pair ( L ,  L’) one obtains 

(IL - 11, L’+ 1) 

and 

L ( L  t I)L’(L‘+ 1)(2L + 1)(2L‘+ 1) 
(2L - 1)(2L + 3)(2L’ - 1)(2L‘ + 3) 

s ~ ’ ( L L ,  L’L’; 0) = 

Relation (6) can be examined for larger values of 4; but the formulae become longer 
and are of less interest for the application referred to in the introduction. Note that two 
more relations have to be satisfied if parity is conserved in the collision process 

(-)e;+e; = ( - )? :+e ; ,  (17) (-)ea+(, = (-)e;+c, 

As a consequence, in the case e: = 0, some pairs (ef, 1;) are not physically allowed, namely 
( L ,  L’) for e; = 1, and the pairs (156) and (15d) for 8; = 2 .  When neither 4; nor 8; is 
zero the rotation matrix elements do not reduce to simple Legendre polynomials but involve 
Jacobi polynomials Pe(“,”’(cos.9) (see equation (4.1.23) of D. We will not consider here 
any of these cases. 
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4. Further sum rules 

Further sum rules can be derived from the above formulae. When mi = mf = 0, relation 
(3) reduces to 

and for 0 = 0 
2 5 2 L + 1 ) ( 0  L L’ 1: ()) = I .  

C=O 

In what follows we assume that L + L’ + L is even. Making use of 

(1% { L  L‘ “)- L(L + 1 )  - [L(L + 1 )  + L’(L’ + 111 
L’ L 1 - 2[L(2L + l ) ( L  + 1 )  L‘(2L’+ l)(L’ + l )]’P 

and of ( l l e )  and (18a), it is easy to deduce the following sum rules: 

= [ L ( L +  1 )  + L’(L’+ 1)12+2L(L + l)L’(L’+ 1 ) .  (22b) 

Following this procedure, further sum rules of the kind (224  and (22b) (with L”(L+l)”, n > 
3) can be obtained considering larger values of e;. 
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The 0 = 0 formulae (ISb),  (2Ob) and (22b) can be easily generalized using a result of 
the paper by Kachurik and Klimyk (1990). Indeed, their recurrence formula (16) relates the 
three Racah coefficients 

[d:l 5: ;I 1; 5: ;} I d E l  5: ;I 
allowing us to obtain further sum rules such as 

+ 2 L ( L +  I)L’(L’+ 1)[3[L(L+I)+L’(L’+1)]-2]  

and 

+ 2L(L + l)L’(L’+ 1){8 + 3L(L + l)L’(L’+ 1) 

+2[L(L+l)+L’(L’+1)][3[L(L+1)+L’(L‘+1)]-5] j .  (24) 

Finally, using some of the previous results, we can write the following formula: 

(25) 
L L1 .C  L L ’ L  1 

b + l ) { L ‘  c=o L J ( 0  0 0 ) 2 = 2 ( 2 L + 1 ) ( 2 L ’ + l )  

for L ,  L’ >, 1 (when L = 0 or L‘ = 0 the sum is zero). 
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